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We demonstrate that the redundant information in light field imagery allows
volumetric focus, an improvement of signal quality that maintains focus
over a controllable range of depths. To do this, we derive the frequency-
domain region of support of the light field, finding it to be the 4D hyperfan
at the intersection of a dual-fan and a hypercone, and design a filter with
correspondingly shaped passband. Drawing examples from the Stanford
Light Field Archive and images captured using a commercially available
lenslet-based plenoptic camera, we demonstrate that the hyperfan outper-
forms competing methods including planar focus, fan-shaped antialiasing,
and nonlinear image and video denoising techniques. We show the hyperfan
preserves depth of field, making it a single-step all-in-focus denoising filter
suitable for general-purpose light field rendering. We include results for dif-
ferent noise types and levels, through murky water and particulate matter, in
real-world scenarios, and evaluated using a variety of metrics. We show that
the hyperfan’s performance scales with aperture count, and demonstrate the
inclusion of aliased components for high-quality rendering.
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1. INTRODUCTION

Focus has existed almost as long as photography, and is employed
in all modern cameras. Focus is used to selectively emphasize el-
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Fig. 1. (a) Conventional focus improves SNR but maintains sharpness on
a single plane; (b) in this work we demonstrate volumetric focus dramati-
cally improving SNR while maintaining focus over a controllable range of
depths. Code and example light fields are available online at http://marine.
acfr.usyd.edu.au/permlinks/Plenoptic. Original light field courtesy the Stan-
ford Computer Graphics Laboratory.

ements of a scene, controlling the level and shape of blur – the
“bokeh” – to yield an aesthetically pleasing result. It is easy to for-
get that a key motivation for focus, and probably the original reason
it came about, is not to blur background elements but to gather more
light, shortening exposure times and increasing signal-to-noise ra-
tio (SNR). The side-effect of this enhanced light gathering is a nar-
rowed depth of field, and applications that benefit from both a large
depth of field and light gathering must strike a balance between the
two. Indeed, this tradeoff can impact or even prevent imaging in
low contrast – at night, through murky water, smoke, cloud, fog or
dust – or where exposure times are limited due to motion.

In combatting low contrast, the obvious approach of increasing
illumination is not always applicable: Large scenes cannot always
be effectively lit, illumination power budgets are typically limited,
and in the presence of scattering media backscatter can negate any
advantage gained by increasing illumination. The alternative ap-
proach of increasing exposure duration also finds limited success
where dynamic scenes or platforms lead to motion blur.

Interfering scene elements such as snow, rain, underwater par-
ticulate matter and other heterogeneous occluders can further com-
plicate imaging. These are distinct from low-contrast scenarios in
that the fundamental limitation is not a lack of signal, with imaging
ultimately limited by sensor noise, but rather interference present
within the signal itself. Increasing illumination or sensitivity will
not help remove partial occluders, they will simply be imaged with
higher fidelity. Widening a camera’s aperture does help remove oc-
cluders, not by virtue of gathering more light, but rather by increas-
ing depth selectivity to better isolate desired scene content.

The ability to better control the tradeoffs associated with focus
is clearly desirable, with potential applications including mobile
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robotics, autonomous driving, consumer photography and surveil-
lance. Recent developments in computational photography have
demonstrated the potential of such an approach, with methods in
focal sweep, flutter shutter, and multiple-exposure-duration video
all allowing a camera to gather more light than would normally be
possible for a given depth of field and exposure time [Nagahara
et al. 2008; Raskar et al. 2006; Agrawal et al. 2009]. Quantitative
analyses confirm that these techniques offer significant benefit in
low-SNR applications [Cossairt et al. 2012; Mitra et al. 2013].

This paper employs light field imaging to break the tradeoffs
of conventional imaging. We present volumetric focus, a method
which improves SNR while maintaining sharp focus over a user-
selected range of depths, rather than at a single depth as in con-
ventional focus – examples of conventional and volumetric focus
are depicted in Figure 1. In contrast to previous all-in-focus or ex-
tended depth of field techniques, the proposed method employs a
simple, linear single-step filter to combine information from across
the light field.

The remainder of this paper is organized as follows: We provide
background on light field imaging and related work in Section 2
and develop the light field characteristics central to the paper in
Section 4. These characteristics are exploited in Section 5 to derive
volumetric focus filters. Sections 6 and 7 show results for camera
array and lenslet-based light fields, giving quantitative and qual-
itative analyses of the volumetric filter’s performance. The paper
concludes with discussion and directions for future work in Sec-
tion 8.

2. BACKGROUND

Whereas a conventional camera measures variations in light as a
function of direction for rays passing through a single position, a
light field (also “plenoptic”) camera encodes variations in light as
a function of both direction and position. This can be achieved by
introducing coded masks [Veeraraghavan et al. 2007] or lens ar-
rays [Ng et al. 2005] into the optical path of a camera, or by con-
structing a grid of conventional cameras [Wilburn et al. 2005] de-
picted as boxes in Figure 2. The resulting images enable a range
of new capabilities, including featureless or linear methods for
traditionally nonlinear, iterative or nondeterministic tasks includ-
ing depth-selective filtering, distractor isolation and visual odom-
etry [Ng et al. 2005; Dansereau and Bruton 2007; Dansereau and
Williams 2011; Yang et al. 2007; Dansereau et al. 2011].

Light field imaging offers important benefits in challenging
imaging conditions, most notably in breaking the conventional
tradeoff between depth of field and SNR. Both arrays of cam-
eras and lenslet-based cameras gather significantly more light for
a given depth of field than conventional cameras [Ng et al. 2005].
Specifically, in both an array ofN×N cameras, and a lenslet-based
plenoptic camera withN×N pixels per lenslet, the increase in light
gathering for a given depth of field isN2 – a huge improvement. In
both cases, the effective baseline also increases, increasing depth
selectivity and the ability to reject occluders.

However, the redundant light that plenoptic cameras capture
must be combined computationally in order to yield the maximum
benefit. The combining of light field information to improve SNR is
the main focus of this paper, and is not without precedent. It is well
established that a light field contains sufficient information to al-
low post-capture focus through appropriate filtering [Isaksen et al.
2000; Ng 2005]. This virtual focus demonstrates similar proper-
ties to conventional focus: It combines light coming from different
directions to increase SNR, and simultaneously offers depth selec-
tivity, blurring out scene elements that fall outside a plane of focus.

Fig. 2. Two-plane parameterizations of light rays – shown is the relative
two-plane parameterization. The points of intersection of a ray with two
parallel planes completely describes its position and orientation in space.
By convention, the s, t plane is closer to the camera, and the u, v plane is
closer to the scene.

Because plenoptic focus can be tuned after the imagery has been
captured, there is no need to decide ahead of time on a single focal
setting.

In this paper we generalize planar focus to volumetric focus. As
in planar focus, volumetric focus combines light coming from dif-
ferent directions to increase SNR. Unlike conventional focus, vol-
umetric focus keeps a range of depths in focus, blurring scene ele-
ments outside the focal volume, as in Figure 1. The filter we present
is useful where planar focus is useful: in ameliorating low contrast
due to lack of illumination, murky water or other attenuating me-
dia, and in seeing around heterogeneous occluders. Volumetric fo-
cus can simplify system design by offering different tradeoffs in
depth of field and SNR than are possible with planar focus. This
is particularly important where large baselines are present: An ar-
ray of cameras sharply focused at a single depth will display a high
SNR, but over a very narrow depth of field. Many applications deal
with non-planar scenes, and so the ability to put a volume in focus
becomes highly desirable. Volumetric focus also simplifies appli-
cations in which a variable focal plane, adjusted to match the scene
content, can be replaced with a fixed focal volume, designed to en-
compass all typical scene depths.

Throughout this paper we employ the relative two-plane parame-
terization depicted in Figure 2, in which light rays are described by
their points of intersection with two parallel planes: an s, t plane, by
convention closest to the camera, and a u, v plane at distanceD, by
convention closer to the scene. The continuous-domain light field
signal L(s, t, u, v) describes all light rays passing through the s, t
and u, v planes. In the case of a light field camera array, it is often
most convenient to place the camera apertures within and aligned
with the s, t plane, as depicted in Figure 2. One of the advantages of
the relative two-plane parameterization is that, if one selects D to
equal the focal length of the cameras in the array, u and v then co-
incide with physical coordinates on the image sensor. One can then
think of the s, t plane as selecting a camera, and u, v as selecting a
pixel.

3. RELATED WORK

Denoising of conventional imagery is a rich and active area of re-
search, and a good review is provided by Buades et al. [2005]. See
also [Guleryuz 2007] for modern overcomplete dictionary devel-
opments, and [Aharon et al. 2006] and [Elad and Aharon 2006]
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for a singular value decomposition generalization of K-means for
learning dictionaries directly from noisy imagery. Because we are
dealing with high-dimensional imagery, video denoising is also
relevant, including recent advances in block matching and filter-
ing [Dabov et al. 2007].

Alternative approaches to low-light and contrast-limited imaging
have appeared in the realm of computational photography. Levoy et
al. [2004] demonstrate an active illumination generalization of con-
focal imaging, allowing effective imaging through turbid media. A
converse of this structured light approach, in which the position
of the camera is varied rather than that of the illumination source,
yields the light field-based method explored in this paper. O’Toole
et al. augment the structured light method by including a variable
camera mask, allowing a range of light transport phenomena to be
investigated through completely optical processes [O’Toole et al.
2012]. Relevant capabilities of this system are depth selectivity and
the improvement of contrast through turbid media.

Iterative variational Bayesian frameworks have been explored
for combining light measured across many apertures [Bishop and
Favaro 2012; Goldluecke and Wanner 2013]. Our work differs sig-
nificantly in its complexity: We present a single, non-iterative linear
filter as a means of combining images from across the light field,
offering a simpler and potentially more robust solution. [Yu et al.
2013] tackle denoising of light fields measured using reflective
spheres, employing a robust image registration technique. Again
our work differs in its level of complexity, by offering a linear, non-
iterative solution.

Several techniques for enhancing a camera’s depth of field or
light gathering ability have emerged from the domain of computa-
tional photography. These include focal sweep, flutter shutter, and
motion blur mitigation from multiple-exposure-time video [Naga-
hara et al. 2008; Raskar et al. 2006; Agrawal et al. 2009]. Because
of the fundamental differences in approach, these offer significantly
different performance tradeoffs to the method we present.

The key principle underlying much of this paper is ultimately
parallax motion and its consequences in the 4D frequency domain.
Parallax motion is a common thread throughout light field research
and indeed much of computer vision, including stereo and multiple-
camera geometry and structure from motion. As early as 1987 the
manifestation of parallax in 2D light field slices was being ex-
plored [Bolles et al. 1987]. That work examines the characteristic
straight lines arising in “epipolar images”, 2D slices of the light
field in spatial and angular dimensions. These straight lines were
the basis for depth estimation from lenslet-based plenoptic cameras
in [Adelson and Wang 2002], and similar ideas were later elabo-
rated in general 4D light fields [Dansereau and Bruton 2004].

Similar developments often arise in disparate fields, and it is in-
teresting that evolution itself may have stumbled upon depth es-
timation from parallax motion in lenticular arrays, in the form of
insect compound eyes [Bitsakos and Fermüller 2006]. A year be-
fore that work was published, Neumann et al. proposed an artificial
compound eye sensor for egomotion estimation, based on a spatio-
temporal generalization of parallax motion [Neumann et al. 2005].
Spatial-domain light field manifolds are also discussed in more de-
tail in [Berent and Dragotti 2007; Gu et al. 1997].

Exploiting parallax motion in light fields is not limited to depth
estimation, and indeed one of its first applications was in filter-
ing. [Levoy and Hanrahan 1996] included a discussion of spatial-
domain antialiasing filters, employing the properties of the light
field to improve rendering quality. In this paper we show that par-
allax motion has consequences in the frequency domain – namely
that the frequency-domain region of support (ROS) of a light field
is a fan-like shape which we call a hyperfan. The frequency con-

tent of light fields has been the subject of extensive research [Chai
et al. 2000; Chan and Shum 2000; Durand et al. 2005; Freeman
et al. 2009], with the frequency plane being a commonly identi-
fied feature. To the author’s knowledge, the first frequency-planar
light field filter was proposed by Isaksen et al. [2000], and the same
idea has since reappeared with minor variations, including efficient
recursive and frequency-slicing approaches for carrying out light
field focus [Dansereau and Bruton 2003; Ng 2005].

Volumetric focus is a generalization of planar focus, and an ex-
ample is discussed in [Dansereau and Bruton 2007]. That work pro-
poses the dual-fan as the frequency-domain ROS of a light field,
and employs multiple-branch filter banks to approximate the dual-
fan shape. Earlier work had proposed a two-branch filter bank to ap-
proximate a fan shape, under different terminology [Stewart et al.
2003]. In the present work it is shown that the dual-fan is a pro-
jection of the much more selective frequency hyperfan underlying
light fields.

Levin et al. [2009] and Levin and Durand [2010] discuss the
light field’s frequency-domain ROS in terms of a dimensionality
gap, the idea that light field images lie on a 3D focal manifold
in 4D frequency space. In [Levin et al. 2009] the focal manifold
is used to analyze a novel, physical lens design which displays
extended depth of field by virtue of collecting light over many
discrete focal depths. [Levin and Durand 2010] employ the focal
manifold in derivations of 2D deconvolution kernels for render-
ing from focal stacks and sparse collections of viewpoints. That
same work discusses aliasing in terms of the focal manifold, and
concludes by rendering wide depth-of-field images from a stack of
more narrowly focused anti-aliased images produced using meth-
ods from [Lumsdaine and Georgiev 2009].

Our work differs in specifically identifying the frequency-
domain ROS of the light field as the 4D hyperfan shape at the in-
tersection of a hypercone and a dual-fan. We effect tunable, post-
capture volumetric focus by surrounding the frequency-hyperfan
with a novel, linear, single-step and irreducibly 4D hyperfan filter.
We demonstrate the frequency hyperfan to show important theo-
retical and practical performance gains over previously described
filters in low-contrast, wide depth-of-field scenarios.

This paper builds on [Dansereau et al. 2013], introducing spatial-
domain and hybrid implementations, addressing aliased passband
components, discussing the scaling of selectivity with sample
count, and providing more extensive results. A more detailed treat-
ment can be found in [Dansereau 2014].

4. THE MANY FACES OF PARALLAX

In this section we explore the spatial- and frequency- domain be-
haviours of light fields, starting with parallax motion and conclud-
ing with a set of rules which, under a few assumptions, all light
fields follow. In subsequent sections we design linear filters which
exploit these rules to carry out volumetric focus.

4.1 Parallax in 2D

We begin by investigating the case of a single point P =
[Px, Py, Pz] in an arbitrary scene, in 2D. The rays emanating from
P can be described using a simple set of rules. As depicted in Fig-
ure 3(a), if one begins with a ray that intersects P (highlighted),
then translates that ray’s point of intersection along s, its point of
intersection along u must follow at a proportional rate in order for
the ray to maintain its intersection with P . In other words, the rays
emanating from P follow a linear relationship in s and u. This is

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.



4 • D. G. Dansereau et al.

u

D

x

(a) (b)

Fig. 3. Parallax in the light field: the point-plane correspondence. (a) for
all rays originating at a point P in space, u varies linearly with s, and by
extension v with t; (b) this describes a line λ in the 2D s, u plane and, by
extension, in the t, v plane.

the light field manifestation of parallax motion [Bolles et al. 1987;
Dansereau and Bruton 2003].

We can write the linear relationship relating s and u, and its gen-
eralization in the vertical dimensions t and v, as[

u
v

]
=
(

D
Pz

) [Px − s
Py − t

]
, (1)

where D is the plane separation in the two-plane parameterization,
depicted in Figure 2. We can visualize this relationship as shown
in Figure 3(b). We label the line supporting P ’s rays λ. Recall that
we are operating under the relative two-plane parameterization –
under the absolute two-plane parameterization a similar linear re-
lationship will hold, but with different slopes and offsets. Notice
how the slope of the line relating s and u is determined entirely by
the depth of P in the scene. An immediate consequence of this is
that a scene containing many points at the same depth will yield
parallel lines in s, u, and in t, v.

Thus far we have discussed only the support of P ’s rays, and
said nothing of their values. In a totally unconstrained scene we can
say very little. P may lie on a mirrored surface, and there can be
arbitrarily many occlusions within the scene, in which case the val-
ues along λ can be almost anything. Thankfully, much of the light
measured in natural scenes is diffusely reflected. Trees, grass, dirt,
rocks, kelp, coral, sand. . . just about everything occurring naturally
is primarily diffuse except water, as confirmed in studies measur-
ing the bidirectional reflectance distribution functions (BRDFs) of
natural materials [Dana et al. 1999]. Similarly, the energy in oc-
clusions will generally be minimal given the limited baseline of
our cameras and following arguments stemming from scene statis-
tics [Geisler 2008; Ruderman 1997].

As such, we adopt the assumptions of a diffuse, Lambertian
scene [Lambert 1760] with no occlusion, allowing us to say that
the line λ corresponding to each point P in the scene is constant-
valued. Considering the case of multiple points, we can see that
the light field slices must consist of multiple, constant-valued lines.
Because the orientation of a line depends only on the depth of its
corresponding point, a scene consisting of surface elements at a
single depth will yield light field slices of parallel, constant-valued
lines.

We now consider the implications of these observations in the
frequency domain. The 2D Fourier transform of a set of parallel,

s

u

(a)

Ωs

Ωu

(b)

s

u

(c)

Ωs

Ωu

(d)

Fig. 4. The relationship between Lambertian scenes and their frequency-
domain regions of support: (a) Points at a single depth, shown in s and u,
correspond to (b) a 2D frequency-domain line. (c) Points over a range of
depths correspond to (d) a 2D frequency-domain fan.

constant-valued lines is an orthogonal line which passes through
the origin. This fact can be derived mathematically [Dansereau
2003], or understood intuitively by realizing that a function which
is constant-valued in a certain direction will exist as a frequency-
domain delta function along that direction.

More formally, the frequency-domain ROS of the Lambertian
surface at depth Pz can be described as

Ωs/Ωu = Ωt/Ωv = D/Pz, (2)

whereΩ is the continuous-domain light field frequency space.
Generalizing for a scene containing a range of depths is possi-

ble through superposition: A scene comprising surface elements at
many depths will exist as a superposition of lines in the 2D light
field. This can be seen by allowing Pz in (2) to sweep through a
range of depths corresponding to the scene extents,

ZMIN < Pz < ZMAX . (3)

The resulting shape is a 2D fan [Chai et al. 2000]. The relationships
between Lambertian scenes and their frequency-domain regions of
support are depicted in 2D in Figure 4.

Recall that we have ignored the effects of occlusion and specular
reflection. The curious reader is referred to [Durand et al. 2005]
for a discussion of specularly reflective surfaces and occlusions in
the context of the light field, [Maeno et al. 2013] for scenes with
refractive objects, [Ji et al. 2013] for an excellent treatment of the
more complex case of refractive gas flows, and [Raskar et al. 2008]
for situations where the camera itself contributes complex lens flare
effects.

4.2 Generalizing to 4D

We now generalize the observations made in 2D in the previous
section to the 4D light field. We begin with the relationship de-
picted in Figure 3, which is expressed as a system of two linear
equations (1). In 4D, each of these linear equations describes a
hyperplane [Dansereau 2003], because it imposes a single linear
constraint on the four dimensions. The two hyperplanes described
by (1) are depicted as 2D slices of 2D images in Figures 5 (a)
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(a) (b)

(c)

Fig. 5. Two 4D hyperplanes, (a) and (b), intersect to form a plane (c).

and (b). This visualization of the 4D light field as an array of slices
is akin to tiling the images captured by the cameras of an array. In
this case the light field is sliced as an array of t, v slices arranged
according to their s, u positions. Notice the compact convention we
follow in labelling these axes.

Applying both equations (1) simultaneously results in an inter-
section of the two hyperplanes. The situation is closely analogous
to the intersection, in 3D, of two planes: Each plane is described by
a single linear equation, and the combination of the two equations
is the line where the two planes intersect. In the same way, our two
linear equations describe two hyperplanes, which intersect to form
a plane in 4D space, as depicted in Figure 5(c). The consequence
of these observations is that a point in space, P , corresponds to a
plane in the 4D light field.

In 2D, we saw that a Lambertian surface at a single depth has
a linear 2D frequency-domain ROS. Generalizing this to 4D fol-
lows exactly the same procedure as above: Each 2D linear ROS
corresponds to a 4D frequency-hyperplane, and the simultaneous
application of the two hyperplanes intersects to form a 4D plane.
The result is that a Lambertian surface at a single depth has a 4D
frequency-planar ROS. Figure 6(a) depicts three points at a single
depth in a scene, and (b) depicts the corresponding 4D frequency-
domain ROS.

Generalizing to multiple depths must be performed in 4D. Sim-
ply applying the fan-shaped ROS depicted in Figure 4(d) in both
s, u and t, v dimensions yields a dual-fan volume [Dansereau and
Bruton 2007], while the true shape of the light field’s ROS, we shall
see, is a 3D manifold embedded in 4D space. This has strong par-
allels to the 3D example of attempting to describe the surface of
a cone as the intersection of a circle and two triangles, yielding a
family of shapes which are not generally cones, and most of which
are volumes, not surfaces.

(a) (b)

(c) (d)

Fig. 6. Deriving the frequency-domain ROS of the light field in 4D: Points
at a single depth (a) have a frequency-planar ROS (b), while points over
a range of depths (c) have an ROS which is a superposition of planes at
different orientations (d). We denote this sweep of planes a hyperfan.

(a) (b)

Fig. 7. Decomposing the hyperfan into (a) the 4D frequency-hypercone
(6), which constrains slopes in two pairs of dimensions, and (b) the dual-
fan (4), (5), shown in red; The shape at their intersection, shown in white in
(b), is the hyperfan.

We begin instead from spatial points at different depths, as vi-
sualized in 4D. Figure 6(c) depicts three points at different depths,
and its corresponding ROS is depicted in (d). The latter is the su-
perposition of planes like the one in (b) at different orientations. We
denote this new manifold the hyperfan, because it is constructed by
sweeping a plane through a range of angles, akin to sweeping a line
through 2D space to form a fan.

A more mathematically driven approach considers (2) and (3)
together, resulting in three constraints describing the frequency-
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domain ROS of the light field:

mMIN < Ωs/Ωu < mMAX , (4)
mMIN < Ωt/Ωv < mMAX , (5)

Ωs/Ωu = Ωt/Ωv. (6)

The first two constraints, (4) and (5), describe the dual-
fan [Dansereau and Bruton 2007]. We shall demonstrate in the fol-
lowing section that the third constraint (6) describes a hypercone.
The hypercone is depicted on its own in Figure 7(a), and in 7(b)
the dual-fan is depicted in red and the intersection of the two, the
hyperfan, is shown in white.

The hypercone restricts two pairs of slopes to be equal in the fre-
quency domain. The physical interpretation of this constraint is that
an object’s apparent motion in the horizontal light field dimensions
s and u should equal its apparent motion in the vertical directions t
and v. Recall that the slope of the line λ supporting a point depends
on the depth of the point in the scene, Pz . It makes sense that, re-
gardless of the value of that slope, it should be equal in horizontal
and vertical directions. Noise will not in general follow this rule,
and so the hypercone shape gives us a high degree of selectivity
against noise.

The dual-fan imposes depth limits on the scene by constraining
the range of valid slopes. In the following sections we will construct
a volumetric focus filter by combining the depth selectivity of the
dual-fan and the noise rejection of the hypercone.

4.3 Hyperfans and Hypercones

To see why (6) describes a hypercone, we begin with the standard
form

R2
s +R2

u −R2
t −R2

v = 0, (7)

which describes a 4D saddle or hyperbolic cone – this differs from
the 4D spherical cone in the sign of the third term. To show equiv-
alence with (6), we transform the coordinate axes by applying ro-
tations of -π/4 in the Ωs, Ωv and Ωt, Ωu planes, yieldingRs

Rt

Ru

Rv

 =
1√
2

Ωs +Ωv

Ωt +Ωu

Ωt −Ωu

Ωs −Ωv

 . (8)

Substituting the rotated coordinates into (7) and simplifying yields
the form shown in (6), thus the two forms are rotated views of the
same shape. The rotated form of the hypercone (7) is depicted in
Figure 8(a), alongside some other rotations of the same shape.

We have made much in this paper of the distinction between the
dual-fan and the hyperfan. As we shall see, the difference made by
treating the hyperfan as an inseparable 4D shape is significant, es-
pecially in regards to improving SNR in low-contrast applications.

5. THE 4D HYPERFAN FILTER

Having described a frequency-domain ROS for the light field, we
proceed to design a linear filter that selectively passes it. We begin
by implementing the filter in the frequency domain, computing the
input’s discrete Fourier transform (DFT), multiplying by the filter’s
magnitude response in the frequency domain, and then computing
the inverse DFT. We explore spatial-domain implementation in the
following section. Note that we describe the filter in terms of the
continuous-domain frequency space Ω, and that practical imple-
mentation requires appropriate adjustment of filter parameters to
reflect the sample rate of the discrete light field [Dansereau 2003].

(a) (b)

(c) (d)

(e) (f)

Fig. 8. Visualizing the 4D hypercone does not come naturally, but by in-
specting tilings under a variety of rotations we can construct an intuition for
its nature. (a) When rotated as in (6) circles are revealed which grow with
distance from the center, highlighting the shape’s cone-like nature; (b) this
rotation elicits the contour lines of a saddle shape; (c–f) further reveal the
complex beauty of this shape, at turns eliciting circles, spirals, saddles and
crosses.

Because the frequency hyperfan lies at the intersection of a dual-
fan and a hypercone as depicted in Figure 7, one way forward is to
describe each of those passbands and take their product. As we pro-
ceed we will evaluate the theoretical selectivity of each passband as
the fractional 4D Nyquist volume that it passes, with smaller frac-
tions corresponding to higher selectivity.

Starting with the dual-fan passband, we note that this is itself the
product of two 2D fan filters [Dansereau and Bruton 2007]

HDF (Ω) = H2D
FAN (Ωs, Ωu, θ1, θ2)H

2D
FAN (Ωt, Ωv, θ1, θ2), (9)

where each 2D fan is implemented by passing all points within the
prescribed angular range θ1 to θ2. The 2D fan filter and the pro-
cess of selecting θ values for a desired depth range are described
in [Ansari 1987; Dansereau and Bruton 2007].

The fractional 2D area passed by each 2D fan has a lower bound
αDF determined by the range [θ1, θ2]. We apply Gaussian smooth-
ing to reduce ringing artifacts, surrounding the fan by a tunable
bandwidth and increasing the passband area by βDF . Because the
same selectivity is applied in Ωs, Ωu and in Ωt, Ωv , the fractional
volume passed by the 4D dual-fan is given by the square

VDF = (αDF + βDF )
2. (10)
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The ideal hypercone (6) is a 3D manifold, not a 4D volume, and
so practical implementation requires surrounding the hypercone by
a bandwidth βHC . We propose the filter with magnitude response

HHC (Ω) = exp

(
−
[
(ΩsΩv −ΩtΩu)

β
2

HC/
√
2 ln 2

]2)
, (11)

where βHC is the 3-dB bandwidth measured as the radius of the
hypercone at the origin – this is the radius of the cone in the ro-
tated Rs, Ru and Rt, Rv planes. The magnitude of the numerator
of the exponential increases with distance from the ideal hypercone
shape, and so the filter rolls off in a Gaussian-like manner from the
ideal passband. Note that the filter offers no selectivity near the ori-
gin, but this is consistent given that the underlying constraint (6)
provides no information to do so.

For analysis we begin by ignoring the Gaussian rolloff, approxi-
mating the hypercone filter as having constant thickness related to
the 3-dB bandwidth βHC through a constant factor κ. Examining
Figure 7(a), this implies every Ωt, Ωv slice, with the exception of
the origin, will pass a constant fraction of its area. Including the
effect of the Gaussian rolloff increases the total admitted volume
by another constant factor which we absorb into κ, for a fractional
volume passed by the hypercone given by

VHC = κβHC . (12)

The hyperfan filter is simply the product of the hypercone and
dual-fan

HHF = HHCHDF . (13)

Referring to Figure 7(b), we notice that every nonzeroΩt, Ωv slice
of the hyperfan will pass a mean area of κβHC , and from the dual-
fan αDF + βDF describes the ratio of nonzero slices. The fractional
volume passed by the hyperfan filter is therefore the product

VHF = κβHC (αDF + βDF ). (14)

Notice the minimum volume passed by the dual-fan is α2
DF ,

while the minimum for the hyperfan is zero – i.e. the hyperfan of-
fers direct control, via βHC , of the total signal energy passed, and
therefore presents significantly greater selectivity than the equiva-
lent dual-fan filter. Note also that both the dual-fan and hyperfan fil-
ters degenerate gracefully to frequency-planar filters as their depth
ranges approach zero.

5.1 Scaling Selectivity

Here we examine the change in filter selectivity as the number of
light field samples increases. The trivial example of a planar fil-
ter focused at a single depth Pz = D has a maximally-selective
passband given by the plane ωs = ωt = 0 [Ng 2005]. In a light
field having N = [Ns, Nt, Nu, Nv] samples, this yields Nu ×Nv

nonzero frequency-domain passband entries, and so the selectivity
of this filter can be written asNuNv/(NsNtNuNv) = 1/(NsNt).
Increasing the number of samples in both s and t by a factor of M
results in an increase in selectivity of M2 [Ng et al. 2005].

Extending this approach to the hypercone, we note that its pass-
band grows with all dimensions. Because each 2D slice of the
light field contains a 1D line, the selectivity can be written as√
NsNtNuNv/(NsNtNuNv) = 1/

√
NsNt. The square root√

NsNt reflects the mean area covered within each 2D slice. In-
creasing the number of samples in both s and t by a factor of M
now results in an increase in selectivity of M , rather than M2 for
the planar filter.

1 17 34 51

1

8

16

24

32

(a)

1 17

1

8

16

24

32

(b)

Fig. 9. Including aliased components in the filter passband: (a) The mag-
nitude response is extended over two additional bands as delineated by the
red lines and (b) reduced to the desired size by taking the maximum value
over the bands.

The hyperfan filter narrows the hypercone to a tuneable range of
depths. At one extreme, it presents very little depth selectivity, re-
sulting in a filter that behaves much like the hypercone, and at the
other extreme it focuses on a very narrow range of depths, yield-
ing a behaviour similar to the planar filter. In most cases, the hy-
perfan occupies the space in between, offering selectivity between
1/
√
NsNt and 1/(NsNt).

The above discussion assumes an increase in sample count by
adding additional spatial samples at the same sample rate, e.g. when
growing a camera array without changing the camera spacing. If
one instead increases the sample rate by packing cameras more
tightly into the same space, or by increasing the number of pix-
els per lenslet in a lenslet-based camera, an additional effect must
be considered: Under these conditions, the angle subtended by the
hyperfan decreases for a given depth of field. This is a consequence
of frequency scaling in ωs and ωt, and it allows a higher selectivity
because the narrower fan more closely resembles the planar case.
Conversely, if the sample rate in u and v is increased, the hyperfan
angles must be widened for a given depth of field, reducing selec-
tivity.

As a concrete example, for a 4 × 4 camera array a planar filter
has a maximum selectivity of 1/(NsNt) = 1/16, a hypercone fil-
ter 1/

√
(NsNt) = 1/4, and a hyperfan filter varies between these

extents as a function of the selected depth of field and the u, v res-
olution of the cameras.

5.2 Including Aliased Components

Arrays of cameras have discontinuous sampling patterns in the s, t
plane due to gaps between apertures. As in the case of resampling
a 2D image at discrete points, this yields aliasing. However, unlike
the example of resampling an image, we do not have the possibility
of applying an antialiasing filter prior to the sampling operation,
and camera array light fields consequently feature aliasing in the
s and t dimensions. This aliasing varies with depth, and is most
pronounced in those elements forming the greatest slopes in s, u
and t, v.

Aliased components are sometimes desirable, indeed u, v slices
of camera array light fields generally contain important edge detail
that is aliased in s, t. Because they occur in a predictable manner,
it is possible to extend our definition for the light field’s ROS, and
our filters’ passbands, to include these aliased components. In the
Results section we demonstrate this approach passes desired edge
detail which would otherwise be destroyed. An evident drawback
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of including aliased components in this manner is a decrease in
selectivity.

A simple way to incorporate aliased components into a filter is to
construct a magnitude responseH over an extended domain that in-
corporates an integer multiple of the desired domain size in ωs, ωt.
Such an extended magnitude response is depicted in 2D in Fig-
ure 9(a), for which the domain in ωs is extended to include two
additional bands. The magnitude response is then collapsed to the
desired size by taking the maximum value over the bands, as de-
picted in Figure 9(b). Extension of this method to 4D is straightfor-
ward.

5.3 Memory and Complexity

If we implement the hyperfan filter in the frequency domain, the
filtering process is one of applying a discrete Fourier transform,
its inverse, and a per-sample complex multiplication. Computation
time for an N -sample light field is therefore constant, and of com-
plexity O(N logN) when using the fast Fourier transform (FFT).

We operate on the three colour channels separately, and so the
memory requirement is for a single colour channel at a time. Two
buffers are required beyond the input light field buffer: the filter
magnitude buffer, and a complex buffer to contain the DFT. The
input light field comprises 8-bit integers, but for simplicity our im-
plementation operates on single- or double- precision floats. For a
colour light field of N samples total, our total additional memory
requirement, for double-precision, is

M = (8 + 16)N/3 = 8N. (15)

In practical terms, the 128 × 128 × 17 × 17 light fields shown
in the Results section occupy approximately N = 14 MBytes. Fil-
tering required an 8N/3 = 38 MByte double-precision buffer to
hold the filter’s magnitude response, and a 16N/3 = 76 MByte
complex double-precison buffer to hold the DFT of the input, for a
total of 8N = 114 MBytes. The single-precision implementation
requires half the memory.

For the full-resolution Stanford Archive light fields, for example
the 1024×1024×17×17-sample Tarot light fields, the input buffer
itself occupies 909 MBytes, and the additional memory require-
ments associated with a double-precision filter are 7272 MBytes.
Most modern computers have sufficient memory to support such an
operation, but in lightweight mobile applications a more memory-
efficient spatial-domain implementation may be desirable.

5.4 Spatial-Domain Implementation

For very large light fields, for example the full-resolution versions
of the Stanford Archive light fields, directly computing the full 4D
DFT may be prohibitively memory intensive on smaller systems.
For this reason, a spatial-domain filter implementation may be de-
sirable. By constructing a spatial-domain finite impulse response
(FIR) filter with impulse response h(i, j, k, l), we can compute the
output light field a single pixel at a time. The key advantage of this
is lower memory utilization: The output buffer need not be the full
light field size if only a subset of the output is needed. This would
be the case, for example, when only a 2D subset of the output light
field is required. Furthermore, the filter buffer – in this case the
impulse response h – will not in general be as large a structure
as the full light field L. The total memory utilization of a spatial
implementation will therefore be much lower than for a frequency-
domain implementation.

As a concrete example, for the 1024 × 1024 × 17 × 17-sample
3-channel Tarot light fields, rendering a single 2D output image re-
quires only a 1024× 1024× 3-sample output buffer, plus a buffer

to store the impulse response h, which we shall show can be quite
modest, between 1 and 16 MBytes. As such, the total memory re-
quirement for the spatial implementation is 20 MBytes or lower,
a significant improvement over the 7272 MBytes required by the
DFT-based implementation.

Where spatial implementation suffers is in processing time1.
Convolution over millions of samples is much more complex than
Fourier-based multiplicative filtering. If, however, only a 2D out-
put slice is required, the spatial convolution method can outpace
the frequency-domain implementation, because the latter treats the
entire signal during the DFT, while the former can focus on those
parts of the light field required for the 2D output. The filter appro-
priate to a given application will therefore depend on the nature of
the desired output, the size of the input, and memory availability.

A key factor allowing us to constrain the size of the impulse re-
sponse h is the range of parallax motion typical of real-world light
fields. Apparent motion is usually restricted to a small fraction of
the total u, v plane, for the simple reason that it is impractical to
design a camera otherwise. Even arrays of cameras with relatively
large baselines are seldom designed to display more apparent mo-
tion than a fraction of the u, v plane, as doing so would yield ex-
cessive aliasing.

The size of the impulse response required for a given volumetric
focus task is directly related to the slopes that it must support. If the
desired depth range projects at most to an apparent motion of ten
pixels, then the resulting impulse response will not need to be more
than ten pixels wide in u and v. In general we assume that the whole
s, t range is to be covered, as doing so maximizes selectivity, and
we select the impulse response’s size in u and v to conservatively
include the maximum apparent motion we might want to include in
the passband.

Having chosen a size for the impulse response, we proceed to
build the appropriately sized hyperfan in the frequency domain, as
in the frequency-domain implementation, then take its inverse DFT.
To avoid windowing artifacts, we pad the frequency-domain shape
to a larger size – for the Stanford light fields, we pad to a hypercube
of size 32 or 64 samples in each dimension.

A typical impulse response h is shown in Figure 10. Hyperfan
impulse responses typically have many samples with very low mag-
nitudes. As such, a simple optimization discards low-magnitude
samples, effectively speeding convolution. The number of samples
to retain in the impulse response can be exposed as a parameter of
the filter, and we will show in the results section that less than 5%
of the samples are typically required for high-quality results.

5.5 Hybrid Implementations

We have seen that the frequency-domain implementation is
memory-intensive but fast, while the spatial-domain method em-
ploys less memory at the cost of slower performance. Overlap-add
and overlap-save methods are a well established means of bal-
ancing memory utilization and speed [Rabiner and Gold 1975].
As an example, for the 1024 × 1024 × 17 × 17-sample 3-
channel Tarot light fields, the FFT can be applied to blocks of
size 32 × 32 × 128 × 128, with results saved into a strip of size
17 × 17 × 128 × 1056 × 3 which cycles back onto the input

1This observation applies mostly to general-purpose computing. Though
the total operation count may be higher, the highly parallel nature of spatial
implementations can make them better suited to parallel architectures, lead-
ing to significantly faster runtimes on specialized hardware such as graph-
ics processing units (GPUs), field programmable gate arrays (FPGAs) and
application-specific integrated circuits (ASICs).
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Fig. 10. A typical hyperfan filter impulse response. This example is for a
9×9×13×13 filter passing a range of slopes between 0 and 1. The overall
shape resembles a superposition of planar filters, but with the inclusion of
orthogonal highpass components that appear as ringing.

buffer once a region of the input is no longer needed. The ad-
ditional memory requirement over the input buffer, including the
32× 32× 128× 128 magnitude response, is 603 MBytes for sin-
gle precision buffers. This is again a significant savings over the
DFT-based implementation, but less so than for the purely spatial-
domain implementation. The speed of this method lies between the
frequency- and spatial-domain methods.

In the experiments that follow we demonstrate spatial, hybrid
and frequency-domain implementations. For smaller light fields,
e.g. those captured by the Lytro, we employ the frequency-domain
implementation as it is practical and efficient. Downsampled ver-
sions of the Stanford light fields are also processed in this man-
ner. For larger light fields, such as full-sized Stanford light fields,
the memory requirements of the frequency-domain implementation
made it less desirable, and so the more memory-efficient spatial-
domain and hybrid implementations are employed – note that these
two methods produce practically identical output.

6. EXPERIMENTS: STANFORD LIGHT FIELDS

The Stanford Light Field Archive2 is a publicly accessible database
suitable for evaluating light field filtering techniques. The twelve
light fields we utilize, listed in the legend of Figure 17, all con-
tain 17× 17 aperture positions in s, t. Aperture positions are close
enough to an ideal grid that ignoring the deviation results in neg-
ligible degradation to output quality. Each image in s, t is rectified
in u, v, and the light fields are in the two-plane parameterization.
Light field geometry varies across the dataset: Grid spacing is not
identical, plane separation varies, and image aspect and resolution
vary, meaning fan extents θ need to be tuned on a per-light field
basis. An alternative would have been to convert the light fields to
a uniform relative two-plane parameterization and use generic fan
extents.

In noise rejection experiments, the Stanford light fields were gen-
erally downsampled to a maximum u, v size of 128 × 128 pix-
els to reduce memory requirements, though full-resolution spatial-
domain and hybrid results were also evaluated. Numeric results are
for monochrome versions of the light fields. When an experiment
calls for fewer than 17 × 17 apertures we discard apertures at the
edge of the light field, retaining the central portion. For consistency

2http://lightfield.stanford.edu/

Fig. 11. The maximum magnitude per frequency component over the first
six Stanford light fields, showing a characteristic hyperfan shape – compare
with Figure 7(b).

across experiments for which aperture counts can vary, metrics re-
port on the central image in s, t.

Displayed results are produced by taking a 2D slice of the 4D fil-
tered light field at the center of s, t. In this sense the filter is acting
as a rendering algorithm, though it only renders at the native u, v
resolution of the light field. As future work we consider extend-
ing the filter to also perform interpolation to greater resolutions.
This work in no way precludes the application of existing 4D-to-
2D plenoptic rendering methods [Lumsdaine and Georgiev 2008;
Bishop and Favaro 2012; Wanner and Goldluecke 2013].

In the following section, further validation of the hyperfan fil-
ter is carried out on imagery collected using a commercially avail-
able Lytro lenslet-based light field camera. This imagery includes
low-light and turbid media examples. The raw lenslet images are
decoded to a 9 × 9 array of images, each having 380 × 380 pix-
els, following [Dansereau et al. 2013]. Compared with the 17× 17
images of the Stanford light fields, we expect significantly less se-
lectivity. However, there is still a potential 81-fold redundancy in
the imagery (practically slightly less due to lenslet vignetting) al-
lowing significant noise rejection to be demonstrated.

As empirical evidence of the frequency-hyperfan ROS of light
fields, we computed the DFT of the first six of the twelve Stan-
ford light fields, scaled to a common size, and selected the maxi-
mum magnitude at each frequency. The result, shown in Figure 11,
establishes the bounds of the light fields in frequency space: The
hyperfan shape is clearly evident. Note that this is true despite the
varying light field geometries and the presence of occlusions, non-
Lambertian surfaces and aliasing.

6.1 The Methods

We test a range of linear filters on the Stanford light fields, includ-
ing the three described in this paper: the hyperfan (13), the hyper-
cone (11) and the dual-fan (9). If our earlier assertions are correct,
the hyperfan will be the most selective of these, though how the
hypercone alone behaves will also prove interesting.

We further test a 4D Gaussian filter as well as a 4D planar
Gaussian filter which is the basis for synthetic refocusing of light
fields [Dansereau and Bruton 2003; Ng et al. 2005; Ng 2005].
Dictionary-based image denoising approaches do not exploit the
structure of the light field, nevertheless by collapsing the light
field into a tiling of images we test the overcomplete discrete co-
sine transform (DCT) [Guleryuz 2007] and K-SVD methods [Elad
and Aharon 2006; Aharon et al. 2006]. Finally, we test the block-
matching and filtering approach V-BM3D [Dabov et al. 2007] by
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applying it over sequences of frames constructed along the s, t di-
mensions.

6.2 Tuning

The hyperfan has four tunable parameters: the two depth limits and
filter rolloff associated with the dual-fan filter, and the bandwidth
associated with the hypercone. The optimal values for these de-
pend on the range of depths occupied by the scene, the number of
apertures in the light field, the noise level, and the light field pa-
rameterization.

If no prior knowledge of scene depth is available, a great deal
of selectivity is nevertheless possible, as the valid range of plane
angles present in any light field is limited [Levin et al. 2009]. In the
relative two-plane parameterization, for example, all planes must
lie within the first and third quadrants in Ωs, Ωu and Ωt, Ωv – i.e.
the plane angles are restricted to a ninety degree range. This obser-
vation allows the fan limits to be pre-tuned for generic scenes, leav-
ing only the hypercone bandwidth to be tuned. Of course, knowl-
edge of a more selective depth range allows for more aggressive
filtering.

For fixed fan angles and selectivity, Figure 12 demonstrates the
dependence of the optimal hypercone bandwidth on input noise
level and aperture count. We leave derivation of closed-form ex-
pressions for these optima as future work – the following results
are for filters tuned to their PSNR-optimal bandwidths and depth
limits through exhaustive search.

6.3 Evaluation

Figures 13 and 14 are typical of the output from each filter – nu-
merical results are the peak signal-to-noise ratio (PSNR), assum-
ing the uncorrupted input to be ideal. Figure 13 introduces addi-
tive Gaussian noise to the light field, while Figure 14 introduces
a model of low-light camera noise, including quantization to 32
levels, intensity-dependent Poisson noise, additive Gaussian noise
(σ = 5% maximum pixel value) and salt & pepper noise (5% den-
sity).

Visually, the hyperfan outperforms the other filters in all cases,
though this will not always be true: Scene elements which vio-
late the underlying assumptions of Lambertian and non-occluding
scenes will not generally conform to the hyperfan passband, and so
the filter will attenuate those elements. If a scene were dominated
by such elements, the filter could perform poorly. Note, for ex-
ample, the severely attenuated crystal ball content in Figure 14(d),
which has resulted in a decreased PSNR. Because the content be-
ing refracted through the ball takes on apparent motion matching
scene elements close to the camera and outside the passband range,
it has been attenuated. These limitations are not always so jarring:
The specular highlights on the Lego knights’ helmets are mostly
retained, for example, while the noise is mostly rejected. Further-
more, some applications can actually benefit from removal of non-
Lambertian and occluding energy, for example geometric recon-
struction and visual odometry.

Figures 15 and 16 show each method’s performance for the
“Lego Knights” light field over a range of aperture counts, for a
variety of noise types, over a range of input noise levels, and eval-
uated with a range of metrics. Note that the hyperfan outperforms
the others for aperture counts of five or more, and continues to im-
prove significantly with aperture count – note the logarithmic ver-
tical scale – confirming the scalability of the approach.

The metrics depicted in Figure 16(b) are normalized to a maxi-
mum value of one. These represent the mean result over 21 levels
of additive Gaussian noise with σ = 10% to 70% maximum pixel

value. The first three metrics are, in order: PSNR, an SVD-based
similarity measure [Shnayderman et al. 2006], and a structural sim-
ilarity measure SSIM [Wang et al. 2004]. The remaining three met-
rics apply only to linear methods and linear noise, as they rely on
separating the filter’s treatment of noise and signal: By filtering
the original image and the noise alone, the attenuation to each can
be evaluated separately. Shown, in order, are the energy remaining
when filtering the original image, the edge content of that filtered
image measured as the mean magnitude of the first derivative of
the image, and the inverse of the energy remaining in the filtered
noise signal. Because of normalization, the best performance for
all metrics is one.

Inspecting the metric results, the humble Gaussian filter takes on
a prominent position in the first three metrics, even taking the lead
for the SVD metric. Note, however, that the Gaussian also attenu-
ates the most edge content. All linear methods are similar in passing
signal energy, and the dual-fan outperforms the hyperfan in edge
content – though it also does a poor job of attenuating noise energy,
thus its weak PSNR. The nonlinear methods do well according to
the SVD but a visual analysis shows that the artifacts they introduce
are jarring to the human visual system. On the whole, the hyperfan
attenuates the most noise energy while passing the second-to-best
edge content, surpassed in this respect only by the poorly selective
dual-fan. The hyperfan also dominates in structural similarity and
PSNR, outperformed by its nonlinear counterparts only in the SVD
metric.

Drawing on the variety of light fields available in Stanford’s
archive, Figure 17 shows the hyperfan’s performance over a range
of inputs – notice the proportional falloff in output PSNR as input
noise increases. The output quality throughout these results is high
and consistent despite the varying presence of occlusions, specular
reflections and refractions in the light fields – all phenomena which
break the assumptions behind the filter. The weakest performance
is for “Tarot Coarse”, which we attribute to refraction in the scene
as seen in Figure 14(d).

6.4 Spatial-Domain Implementation

We employed the spatial-domain implementation described in Sec-
tion 5.4 to demonstrate volumetric focus on the full-resolution
Stanford Archive light fields. Examples are shown in Figure 18.
We found that the number of nonzero impulse response samples re-
quired to obtain high-quality results varies with the depth of field of
the passband signal. The narrow-passband filter employed to gen-
erate Figure 18(b) was well approximated with 2000 impulse re-
sponse entries, while the wider depth of field examples (c) and (d)
required 40,000 samples.

It is possible to synthesize interesting filters by combining mul-
tiple hyperfans. This can be accomplished by taking the maximum
magnitude response across two or more filters, for example, yield-
ing a single-step linear filter with a complex passband. Figure 19
shows the result of including most of the tarot scene in the pass-
band, with the exception of a narrow volume surrounding the crys-
tal ball. Such disconnected focal regions cannot be obtained using
conventional cameras, and might be useful in removing occluding
interference from scenes comprising objects of interest at multiple
depths, for example.

6.5 Aliased Components

Some of the Stanford light fields contain substantial aliasing in s
and t. Figure 20 demonstrates the impact of including these aliased
components in the passband of a hyperfan filter, as described in
Section 5.2. Note the dramatic improvement in passband perfor-
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Fig. 12. Optimal bandwidth shifting with (a) noise level and (b) aperture count.

mance on the back wall of the Lego scene – this scene content ap-
pears at a large slope in s, u, showing substantial aliasing in s and t.
Note also that the presence of aliased components in the stop-band
signal, shown in the bottom two images, is probably impossible to
remove by purely linear means, as the undesired and desired signals
overlap in the frequency domain.

7. EXPERIMENTS: LENSLET-BASED CAMERA

Validation was carried out on imagery collected using a Lytro
consumer-grade lenslet-based hand-held light field camera – typ-
ical low-contrast results are depicted in Figure 21. The left column
depicts a low-light aquarium scene, and the right depicts a low-
light outdoor scene. Inspection of the unfiltered and filtered images
shows that the hyperfan filter has significantly attenuated the noise.
Note also that the specks of dirt on the side of the aquarium in the
top row have been rejected by the depth selectivity of the filter –
one of these is indicated by a black arrow in the inset depicting a
Silver Dollar fish.

7.1 Murky water and particulate matter

Figure 22 depicts a checkerboard as imaged through turbid wa-
ter. The histograms beneath each image show the distribution of
pixel intensities corresponding to white (top) and black (bottom)
checkerboard squares, where intensity is taken as the mean of the
three colour channels. Numeric values are contrast-to-noise ratio
(CNR), rather than PSNR, because this is more reflective of the
quality of images in the presence of a scattering medium. PSNR
neglects the biasing effect of backscatter, which effectively limits
the range and contrast of a signal. Contrast was taken as the dif-
ference between the means of pixels belonging to white and black
checkerboard squares, and noise level as the standard deviation of
pixels from their respective distribution means.

In Figure 22 illumination and camera were co-located, resulting
in significant backscatter as seen in (a). The result of increasing
illumination is depicted in (b) – saturation and backscatter have
limited the efficacy of this approach, both visually and in terms of
CNR. The result of gain-adjusting the input is shown in (c), includ-
ing removal of a low-frequency biasing term caused by backscatter.
The biasing term was estimated by low-pass filtering in the u and
v dimensions. Notable is the similarity of this adjusted image to
a gain-adjusted low-light image – noise has limited the extent to
which contrast can be enhanced. The final two images show the

output of the hyperfan filter tuned to two different depth ranges:
The first is for a wide depth range including content between the
camera and the checkerboard, while the final image is for a narrow
filter more closely matching the geometry of this constant-depth
scene. In all cases, the noise reduction effected by the hyperfan fil-
ter has been significant visually and in terms of CNR.

In applications involving heterogeneous occluders, e.g. snow,
rain, or particulate suspended in water, the depth selectivity of
the hypercone filter becomes an asset in reducing the influence of
the interfering elements. Figures 23 and 24 show scenes imaged
through fine, suspended particulate matter. The hypercone filter in-
creases the CNR of the images, but has little effect on the partic-
ulate matter, while the hyperfan both reduces noise and attenuates
the occluding particles. We attribute the decrease in CNR between
the hypercone and hyperfan output in Figures 24(c) and (e) to the
non-stationary mean across the image caused by backscatter, which
is not accounted for in the CNR metric. Note that the CNR for the
corresponding backscatter-compensated images reflects the quali-
tative improvement in these images.

Figure 23 features clearer water than 24 and there is therefore
less advantage in applying the hypercone. That scene also includes
a foreground element, positioned approximately halfway between
the checkerboard and the camera, requiring that a volumetric focal
region be utilized to keep all scene elements in focus. This fig-
ure underlines that particle attenuation is not achieved by the same
mechanism as noise reduction. There is adequate illumination in
this scene, and the noise level is low. All the scene elements, in-
cluding the particulate matter, conform to the rules of parallax mo-
tion, and will therefore fall within the frequency-hypercone in the
light field. It is the depth selectivity of the hyperfan that allows us
to single out the desired scene elements.

Note that CNR is a useful but inaccurately named measure in
this context, as the “noise” value includes interference from the
particles. A more accurate term would be the contrast-to-noise-and-
interference ratio, similar to the carrier-to-noise-and-interference
ratio employed in telecommunications [Proakis and Salehi 2007].

7.2 Visual Impact of Bandwidth

To investigate the visual impact of the dual-fan angle and hyper-
cone bandwidth, hyperfan filters over a range of settings were ap-
plied to light fields taken in low light, or with noise artificially
added. Figure 25 shows a typical result: wider fans admit wider
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(a) Original (b) Input 13.9 dB (c) Hyperfan 30.4 dB

(d) Hypercone 27.4 dB (e) Dual-fan 24.9 dB (f) Planar 26.9 dB

(g) Gaussian 25.6 dB (h) DCT 21.0 dB (i) K-SVD 21.4 dB

(j) VBM3D 25.4 dB (k) Mistuned Planar (l) Mistuned Hyperfan

Fig. 13. Filtering results for the Stanford “Lego Knights” light field: (a) The original scene, and (b) with additive white Gaussian noise; (c)–(i) show filter
outputs; the depth-tunable results (c), (e) and (f) are at the PSNR-optimal balance between noise rejection and reduction in depth of field; the effects of
mistuning are exaggerated in (k),(l); the hyperfan output is visually superior, with the nonlinear methods providing the most jarring artifacts, the Gaussian
and planar reducing edge content, and the dual-fan and hypercone being less selective to noise. Original light field courtesy the Stanford Computer Graphics
Laboratory.
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(a) Original (b) Before Gain, S&P (c) Input 12.9 dB

(d) Hyperfan 23.0 dB (e) Hypercone 22.9 dB (f) Dual-fan 16.4 dB

(g) Planar 20.1 dB (h) Gaussian 21.0 dB (i) DCT 17.9 dB

(j) K-SVD 18.2 dB (k) VBM3D 20.5 dB

Fig. 14. Filtering the “Tarot Coarse” light field for synthetic noise based on a camera model including quantization, Poisson, Gaussian and salt & pepper
noise; (a) the original light field, (b) the low-light image prior to salt & pepper noise and gain control, (c) the gain-adjusted input including salt & pepper noise,
and (d)–(k) the filter outputs; light refracting through the crystal ball violates the depth constraints, leading to attenuation of that content and a lower PSNR for
depth-selective filters (d), (f), and (g); the hyperfan nevertheless arguably provides the most visually appealing result. Original light field courtesy the Stanford
Computer Graphics Laboratory.
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Fig. 15. Performance of the evaluated methods vs. (a) aperture count, and (b) noise level. The hyperfan generally shows the best performance.
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Fig. 16. Performance of the evaluated methods vs. (a) noise type, and (b) metric. The hyperfan generally shows the best performance.
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Fig. 17. Hyperfan filter output PSNR (dB) over a range of noise levels for
the Stanford Archive

depths of field, but attenuate noise less effectively. At the same
time, narrower hypercone bandwidths attenuate noise more effec-
tively, but also attenuate potentially desirable non-Lambertian ef-
fects, including occlusion.

8. DISCUSSION AND FUTURE DIRECTIONS

We have established that the frequency-domain ROS of a light field
image is a hyperfan at the intersection of a dual-fan and a hyper-
cone. We have designed, implemented and tested a novel volumet-
ric focus filter which selectively passes this ROS. This approach to
light field denoising is linear and featureless, operating efficiently
as a single-step, constant-runtime filter.

We have demonstrated the filter outperforming a range of lin-
ear and nonlinear alternatives over a range of conditions includ-
ing noise type, noise level, aperture count and scene content. Test
scenes included examples of occlusion, non-Lambertian surfaces,
attenuating media and interference.

Numeric results were shown for twelve light fields from the
Stanford Light Field Archive, including representative images and
quantitative results over a range of metrics. The filter was shown to
be effective at removing noise in all cases, generally outperforming
the other methods we evaluated including planar, dual-fan, over-
complete DCT, K-SVD and video-based VBR3D methods. We also
showed that the hyperfan filter’s performance scales with aperture
count.
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(a) (b)

(c) (d)

Fig. 18. Examples of volumetric focus applied using a spatial-domain fil-
ter implementation: Only the pixels shown in these 2D slices of the 4D
output light field were computed, saving significant processing time and
memory. (a) A slice of the input light field (b) filtered with a narrow depth
of field centered on the crystal ball, (c) filtered with a wide depth of field
containing elements near the camera including the ball, and (d) filtered with
a wide depth of field containing elements farther from the camera and ex-
cluding the ball. Notice that the image within the crystal ball behaves sim-
ilarly to foreground scene elements, and as such passes most clearly in (c).
Original light field courtesy the Stanford Computer Graphics Laboratory.

Fig. 19. Example of a multiple-passband filter constructed as the superpo-
sition of two hyperfans. Here only a volume surrounding the crystal ball is
left out of the focal volume. Notice how the crystal ball content is never-
theless left clear, as it behaves similarly to objects closer to the camera, and
as such does not conform to the parallax motion of the stop-band signal.
Original light field courtesy the Stanford Computer Graphics Laboratory.

(a) (b)

(c) (d)

Fig. 20. Hyperfan filter outputs without (left) and with (right) inclusion
of aliased components, for filters passing distant (top) and nearby (bottom)
volumes. Note a significant sharpening of distant passband elements in the
top-right figure due to inclusion of the aliased components. These same
components masquerade as passband elements in the bottom figures, ap-
pearing as high-frequency lines. Original light field courtesy the Stanford
Computer Graphics Laboratory.

Further results demonstrated the filter on imagery collected with
the Lytro consumer-grade light field camera, including scenes with
low light, turbid (murky) water, and suspended underwater partic-
ulate matter. We showed how increased illumination can lead to
saturation in the presence of backscatter, effectively limiting how
much light can be employed to mitigate contrast limits in underwa-
ter imaging. The hyperfan filter was shown to significantly improve
CNR and visibly improve image quality. Finally, we demonstrated
that, where aliased components are present an inclusion of these
components in the filter’s passband can significantly improve out-
put performance.

There are several immediate avenues for future work. Automated
means of selecting filter parameters would be desirable, and we be-
lieve the hyperfan filter could be useful for a range of interesting
tasks, including compression and interpolation. The inverse-DFT
FIR-based approach we presented was only one of many possi-
ble approaches to spatial-domain implementation. The FIR filter
design might benefit from iterative refinement similar to that pre-
sented in [Cetin et al. 1997], for example, and recursive infinite
impulse response (IIR) filters may be more appropriate in some ap-
plications, particularly where hardware implementation would be
of benefit.

The 2012 paper “When Does Computational Imaging Improve
Performance?” and follow-on work [Cossairt et al. 2012; Mitra
et al. 2013] provide theoretical bounds on image improvement and
relate it to absolute light levels. It would be interesting to evaluate
the hyperfan filter in this context, and against other computational
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(a) Low-Light Input (b) Low-Light Input

(c) Gain-Adjusted (d) Gain-Adjusted

(e) Hyperfan-Filtered (f) Hyperfan-Filtered

Fig. 21. Filtering low-light imagery from a Lytro consumer-grade light
field camera: (a,b) Low-contrast input, (c,d) gain-adjusted images, and (e,f)
filter output, showing a visible improvement in SNR. The filtered results
demonstrate both noise rejection and depth selectivity, with specks of dirt
on the side of the aquarium being attenuated based on depth – one such dirt
speck is indicated by the black arrow.

photography techniques such as focal sweep and flutter shutter [Na-
gahara et al. 2008; Raskar et al. 2006].

Finally, the hyperfan filter can attenuate desired occluding edges.
In the case of the wide depth of field Lego Knights scene, for exam-
ple, some ghosting is visible in desired, occluding foreground ele-
ments. A means of better dealing with these occlusions would be
desirable, perhaps through detection and refinement of small sub-
sets of the light field using a more complex method, like the vari-
ational Bayesian framework proposed in [Goldluecke and Wanner
2013], or by employing a form of median filtering like that pro-
posed in [Vaish et al. 2006].

ACKNOWLEDGMENTS
This work is supported in part by the Australian Centre for Field
Robotics, the Australian and New South Wales Government and
The University of Sydney.

REFERENCES

ADELSON, E. H. AND WANG, J. Y. A. 2002. Single lens stereo with a
plenoptic camera. IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI) 14, 2, 99–106.

AGRAWAL, A., XU, Y., AND RASKAR, R. 2009. Invertible motion blur in
video. ACM Transactions on Graphics (TOG) 28, 3, 95.

AHARON, M., ELAD, M., AND BRUCKSTEIN, A. 2006. K-SVD: An algo-
rithm for designing overcomplete dictionaries for sparse representation.
IEEE Transactions on Signal Processing (TSP) 54, 11, 4311–4322.

ANSARI, R. 1987. Efficient IIR and FIR fan filters. IEEE Transactions on
Circuits and Systems 34, 8, 941–945.

BERENT, J. AND DRAGOTTI, P. L. 2007. Plenoptic manifolds. Signal
Processing Magazine 24, 6, 34–44.

BISHOP, T. E. AND FAVARO, P. 2012. The light field camera: Extended
depth of field, aliasing, and superresolution. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence (TPAMI) 34, 5 (May), 972–986.
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(e) Narrow Hyperfan 14.9 dB

Fig. 22. A demonstration of imaging in a turbid medium: The histograms beneath each image indicate the distribution of pixel intensities in white and black
checkerboard squares, and numeric values are CNR for the same. (a) The low-contrast input is not ameliorated by (b) adding light, due to backscatter and
saturation – note the change in scale on the histograms; (c) Backscatter compensation increases contrast but is noise-limited, while (d) hyperfan filtering
significantly reduces noise, yielding higher-CNR results; (e) Further improvement is possible by trading off depth of field in this planar scene.
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(a) Input 9.99 dB (b) De-Backscatter Input
10.5 dB

(c) Hypercone 14.2 dB (d) De-Backscatter Hypercone
15.0 dB

(e) Hyperfan 14.486 dB (f) De-Backscatter Hyperfan
15.4 dB

Fig. 23. A scene with suspended particulate matter and relatively clear wa-
ter. Numerical results are CNR over the checkerboard region of the image,
and images in the right column have been backscatter-compensated. Rela-
tive to the input (top) the hypercone filter reduces noise (center), but does
not attenuate particulate occluders. The hyperfan filter reduces noise and
attenuates the occluders, while maintaining focus over the scene’s volume
(bottom).
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(a) βHC = 0.1, mDF = 0 (b) βHC = 0.2, mDF = 0 (c) βHC = 0.4, mDF = 0

(d) βHC = 0.1, -0.5 <mDF < 0.5 (e) βHC = 0.2, -0.5 <mDF < 0.5 (f) βHC = 0.4, -0.5 <mDF < 0.5

(g) βHC = 0.1, -1 <mDF < 1 (h) βHC = 0.2, -1 <mDF < 1 (i) βHC = 0.4, -1 <mDF < 1

Fig. 25. Visual impact of the fan angle and hypercone bandwidth of a hyperfan filter: Columns from left to right correspond to hypercone bandwidths of 0.1,
0.2 and 0.4, and rows from top to bottom correspond to dual-fans subtending slopes mDF of 0, ±0.5 and ±1. Note that wider fans admit a greater range of
depths, broadening the depth of field, but also admitting more noise. Narrower hypercones admit less noise, but attenuate non-Lambertian effects including
occlusions – this appears as streaking in the left column of images.
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