
Exercise 1 Extensions

Extension 1: ESLF Files
Download the ESLF sample at http://dgd.vision/LF2018/flowers.eslf.6334.zip and inspect the
file IMG_6334.eslf.png. The eslf format was introduced by the Lytro Power Tools Beta and is
in common use in large datasets online. The Lytro tool applies debayering, undoes
hexagonal lenslet packing, applies rectification, and applies devignetting and colour
correction. The format is relatively efficient and easy to load.

Write a tool to load this file format into a 4D structure (hint: the lenslet images are 14x14
pixels wide). Try some basic filtering on the loaded file. If you get stuck there’s a working
example for loading ESLF files at http://dgd.vision/LF2018/LFXReadStanfordIllum.m .

Questions:

1. ESLF files are organized in lenslet order (a k,l tiling of i,j images). They are also
compressed using the PNG format, which exploits similarity of adjacent pixels to
losslessly compress images. What would happen if the ESLF were organized in
image order instead (a i,j tiling of k,l images)?

2. Could the PNG format be extended to exploit similarities both between adjacent

lenslet images (similarity along k,l) as well as within lenslet images (along i,j)? How
much impact do you expect this to have on the compression rate?

Extension 2: Super-Resolved Refocus
Extend the shift-and-sum filter by adding a capability for super-resolution. Either build your
own function from scratch, or modify the existing function LFFiltShiftSum .

An easy approach is to upsample every 2D slice as you shift it, prior to adding the slices
together.

Questions:

1. At which slopes are there appreciable improvement in resolution? At which slopes is
there not?

2. This method operates only for objects at one depth. How could you extend it to work
on scenes occupying a range of depths?

http://dgd.vision/LF2018/flowers.eslf.6334.zip
http://dgd.vision/LF2018/LFXReadStanfordIllum.m

Extension 3: Augmenting the renderer
Augment the interpolating renderer with one or more of the following:

● Create a loop to animate the camera’s pose and generate animated output
● Run it on different input light fields
● Create the “vertigo” effect by translating the camera towards or away from the scene

while adjusting its focal length to keep the apparent size of the subject fixed
● Add depth of field effects (finite aperture)
● Simulate motion blur
● Use depth information to improve rendering quality

Question: Describe how you augmented your renderer and any problems you encountered.

Extension 4: Slope and Depth Estimation
Load one of the sample light fields and write a local slope estimator. Start with Matlab’s
gradient function, [Li,Lj,Ll,Lk] = gradient(LF) , taking care to get the output order
correct.

Combine local slope estimates by taking the average in neighbourhoods. Use the
magnitude of the slope to weight the mean.

For a light field with a calibrated intrinsic matrix, derive the metric depth from the estimated
slope.

If you get stuck there’s a working example at http://dgd.vision/LF2018/LFXSlopeDepth.m .

Questions:

1. For both gantry-based and lenslet-based light fields, lines of constant value tend to
align closely with the i and j axes. Given this, which is more numerically stable as a
measure of the line’s slope, Li/Ll or its inverse? Why?

2. How can you combine information from multiple colour channels?
3. What happens if you apply a volumetric focus filter to a depth estimate?

http://dgd.vision/LF2018/LFXSlopeDepth.m

