L1b: Cameras, Sampling, Calibration

2018 IEEE SPS Summer School on Light Field Data Representation, Interpretation, and Compression

Donald G. Dansereau, May 2018

Schedule

09:30 - 10:15	Lecture 1 a D Danserau	
10:15 - 10:45	Coffee break	
10:45 - 11:30	Lecture 1 b D Danserau	
11:30 - 11:45	Break	
11:45 - 12:30	Lecture 1 c D Danserau	
12:30 - 13:00	Lunch	
13:00 - 14:00		

14:00 - 15:00	IEEE
15:00 - 15:30	Exercise 1 D Danserau
15:30 - 16:00	Coffee break
16:00 - 16:45	Exercise 1
16:45 - 17:00	D Danserau
17:00 - 17:30	

Outline

Lecture 1a: Introduction to Light Fields

Lecture 1b: Cameras, Sampling, & Calibration Review: 2D Image Geometry Sampling Patterns Decoding, Calibration, Rectification An interpolating renderer

Lecture 1c: Basic Processing

Hands-on: Writing a renderer, handling light fields in matlab

Review: Image Transformations

$$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} \cos \theta_0 & -\sin \theta_0 \\ \sin \theta_0 & \cos \theta_0 \end{bmatrix} \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} + \begin{bmatrix} \Delta x_0 \\ \Delta y_0 \end{bmatrix}$$
$$\boldsymbol{p_i} = [x_i, y_i]^{\mathsf{T}} \qquad \boldsymbol{t_i} = [\Delta x_i, \Delta y_i]^{\mathsf{T}} \qquad R_i = \begin{bmatrix} \cos \theta_i & -\sin \theta_i \\ \sin \theta_i & \cos \theta_i \end{bmatrix}$$
$$\boldsymbol{p_1} = R_0 \boldsymbol{p_0} + \boldsymbol{t_0}$$
$$\boldsymbol{p_2} = R_1 \boldsymbol{p_1} + \boldsymbol{t_1}$$
$$= R_1 (R_0 \boldsymbol{p_0} + \boldsymbol{t_0}) + \boldsymbol{t_1}$$

... Concatenation is cumbersome

Again with Homogeneous Coordinates

$$\begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta_0 & -\sin \theta_0 & \Delta x_0 \\ \sin \theta_0 & \cos \theta_0 & \Delta y_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_0 \\ y_0 \\ 1 \end{bmatrix}$$

$$\boldsymbol{p_i} = [x_i, y_i, 1]^{\mathsf{T}} \qquad H_i = \begin{bmatrix} \cos \theta_i & -\sin \theta_i & \Delta x_i \\ \sin \theta_i & \cos \theta_i & \Delta y_i \\ 0 & 0 & 1 \end{bmatrix}$$

 $p_1 = H_0 p_0$ $p_2 = H_1 p_1 = H_1 H_0 p_0$

... Concatenation is matrix multiplication, much nicer

Review: Image Transformations

Projective 8dof Affine 6dof Similarity 4dof Euclidean

3dof

Projective transform between two camera views

Image registration, stitching, ... Planar scene only!

Image c/o Mark Pollefeys http://slideplayer.com/slide/5947732/

Review: Camera Calibration

Extrinsics (pose):

Intrinsics (pixel-ray mapping):

Radial lens distortion:

$$\begin{bmatrix} x_{d} \\ y_{d} \end{bmatrix} = \left(1 + k_{1}^{(Z)}r^{2} + k_{2}^{(Z)}r^{4}\right) \begin{bmatrix} x_{u} \\ y_{u} \end{bmatrix}$$

where $r = \sqrt{x_{u}^{2} + y_{u}^{2}}$

For N_{poses} poses

Estimate $6N_{poses}$ extrinsics 4 intrinsics ~3 radial distortion

Camera Sampling Patterns

Light Field Cameras

Stanford camera array

Bettini 1642

9

EPIImaging

Raytrix

Sampling Patterns

For ideal cameras *w* are typically 4D parallelograms in ray space Note rays are defined by *s*,*t*,*u*,*v* in meters; pixels by *i*,*j* indices (and later *i*,*j*,*k*,*l*)

Example 1: Pinhole Camera

Pinhole: w are infinitesimal in sFinite pixels: w have width in U

Example 2: Thin-Lens Camera

Calibration generally maps out the centroids of the w quads

Camera Intrinsics

We can write a simple expression relating pixel index to patch center If we set plane separation D=1m, *H* is a conventional camera intrinsic matrix

Lenslet-Based LF Camera

Simplified Lenslet Camera

Less Simplified Lenslet Camera

$$\begin{bmatrix} s \\ t \\ U \\ V \\ 1 \end{bmatrix} = \begin{bmatrix} h_{1,1} & 0 & h_{1,3} & 0 & h_{1,5} \\ 0 & h_{2,2} & 0 & h_{2,4} & h_{2,5} \\ h_{3,1} & 0 & h_{3,3} & 0 & h_{3,5} \\ 0 & h_{4,2} & 0 & h_{4,4} & h_{4,5} \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} i \\ j \\ k \\ l \\ 1 \end{bmatrix}$$

Less Simplified Lenslet Camera

Even Less Simplified: Lens Distortion

Unrectified Illum image: distortion in u,v

Distortion is in 4D, not only 2D

[Image c/o Ihrke et al 2016]

Solution: "rectify" (unwarp) images before using instrinsic model Usually needs calibration to be accurate

Decoding, Calibration, Rectification

Decoding, Calibration, Rectification

Decoding: Converting from raw input (2D in case of lenslet camera) to a 4D light field in a desired parameterization

Calibration: modelling the camera's intrinsics (and lens distortion) to map pixels to rays and vice-versa

Rectification: Undoing lens distortion

Depending on access to hardware and needs of a project, different combinations will be appropriate

Camera Array: Full Metric Calibration

Per-camera intrinsics, extrinsics, lens distortion Hard, but can use priors: close to grid; similar lenses

$$\begin{bmatrix} s \\ t \\ U \\ V \\ 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & h_{3,3} & 0 & h_{1,5} \\ 0 & 0 & 0 & h_{4,4} & h_{2,5} \\ h_{3,1} & 0 & h_{3,3} & 0 & h_{3,5} \\ 0 & h_{4,2} & 0 & h_{4,4} & h_{4,5} \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} i \\ j \\ k \\ l \\ 1 \end{bmatrix}$$

Camera Array: Non-Metric Calibration

Assume rotation error dominates Co-register all images to a common view (e.g. center view) *At a specific depth plane: Homography*

Animation: cycling through views of LF

Homographies for Array Registration

Pairwise homographies \rightarrow Co-registered LF Register each with center view

Camera Array: Non-Metric Calibration

Errors in rotation get corrected

We can do a lot with the LF even without metric information

Lenslet Camera: Metric Calibration

Extrinsics, intrinsics, radial lens distortion

$$\begin{bmatrix} s \\ t \\ U \\ V \\ 1 \end{bmatrix} = \begin{bmatrix} h_{1,1} & 0 & h_{1,3} & 0 & h_{1,5} \\ 0 & h_{2,2} & 0 & h_{2,4} & h_{2,5} \\ h_{3,1} & 0 & h_{3,3} & 0 & h_{3,5} \\ 0 & h_{4,2} & 0 & h_{4,4} & h_{4,5} \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} i \\ j \\ k \\ l \\ 1 \end{bmatrix}$$

Lenslet Camera Decode Only (no calibration)

Raw lenslet image after 2D debayering and devignetting (cropped)

Flat-field white image (crop)

Decode from Lenslet Image to 4D

Example Decode (Light Field Toolbox, no rectification)

Gantry LF for comparison [LF c/o Stanford]

Animation: Lytro Illum image Decoded with LF Toolbox

Rectification without Calibration (Lytro Power Tools Beta, no H matrix)

Uses an idealized lens model to undo lens distortion

Animation: Lytro Power Tools rectified output

Rectification with Calibration (Light Field Toolbox, Calibrated)

Unrectified, rectified samples overlaid

Calibrated rectification includes metric H

Lytro Illum image Decoded with LF Toolbox

A Simple Renderer

Given a light field render novel 2D perspective views

Describe camera's rays As though at origin Position + direction

Transform each ray using camera's pose

Intersect each ray with s,t and u,v planes, yielding a list of rays $\boldsymbol{\Phi}$

A Simple Renderer

Convert the list of rays $\boldsymbol{\phi}$ to a list of fractional indices **n**

n = H⁻¹ ϕ

Interpolate to estimate the light field's value at **n**

I = L(n)

Points to Ponder

When rendering, should we interpolate in u,v; in s,t; in s,u, ... or ...?

How will aliasing affect the rendering?

